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Three-dimensional magnetic kinks in nonresistive plasmas may be created 
and annihilated in pairs and conserve their homotopy properties during their 
lifetime. Such kinks could prove relevant to astrophysical, geophysical, or 
laboratory plasma problems. We describe magnetic kinks with one axis of 
rotational invariance analytically and graphically. As an example, we 
examine their relevance to the puzzle of the origin of galaxies. 

1. WHAT IS A KINK? 

Homotopy theory, introduced into modern physics in Wigner's theory 
of  spin, has proved fruitful in general relativity (Finkelstein and Misner, 
1959); in quantum field theory, where it gave rise to the concept of  topological 
solitons; and in solid state physics, where it recently appeared helpful in 
classifying defects (Toulouse and Kleman, 1976) and analyzing phase transi- 
tions. Because of its purely topological nature, it allows the study of broad 
classes of  field configurations at one time, including highly asymmetric ones, 
without the need of their specific analytic expression. It establishes new 
conservation laws not derivable from Noether's theorem. 

Basic definitions and theorems of homotopy theory are recalled in 
Appendix A. 

Consider a physical field configuration as a continuous map f :  X--> Y 
from a topological space X (the domain or base space) to another topological 
space Y (the range or image space). The set of all the field conf igurat ionsfof  
given value on the boundary of the domain can be divided into homotopy 
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classes. Together with a proper definition of addition, these classes constitute 
the (absolute) homotopy group of  the field. Insofar as the passage of  time is a 
homotopy, an initial field configuration whose boundary value is maintained 
fixed can only evolve within its homotopy class: The homotopy invariants of 
the field are constants of motion. 

In virtue of boundary conditions, X is usually some m-dimensional 
sphere S m. 

This conservation law is useful only when the homotopy group of the 
field considered is nontrivial, that is, possesses more than one element. This 
nontriviality is a known property of  the two topological spaces X, Y of the 
field in many cases. For  instance, the homotopy group of  an angle field 
(Y = S 1 = the circle) is nontrivial on a line (X = S ~) but is trivial on a 
plane (X = $2). In the nontrivial cases, it follows that there exist certain field 
configurations that are not continuously transformable into the uniform field 
f = const. They are called kinked. 

Using the addition of  the homotopy group we can make the most general 
class of field configurations out of  a small number of special classes, the 
generators of the group. A field configuration belonging to one of  these 
generating classes of the homotopy group is called a kink or homotopon. 
(Finkelstein, 1966). 

Search for homotopons, when they are known to exist, has great 
heuristic value. It forces the study of  new field configurations whose structures 
are richer and less symmetric than the standard ones and persist in time. 

In this paper, we apply homotopy theory to the magnetic field of a 
nonresistive plasma. We establish the theoretical existence of kinks in such a 
field, give examples with one axis of rotational invariance, and consider their 
relevance to the problem of  the formation of the galaxies. 

2. EXISTENCE OF MAGNETOHYDRODYNAMIC KINKS 

For a physical field to possess kinks, the appropriate homotopy group 
must be nontrivial, and some nontrivial configurations must be physical, 
that is, obey the specific constraints of the field, such as the existence of a 
corresponding energy-stress tensor in the case of a gravitational kink, or 
div B = 0 for a magnetic kink. 

2.1. The Homotopy Group of the Plasma Magnetic Field is Dynamically 
Nontrivial. In general, nontriviality may occur in two ways: as a kinematical 
property of the field, or as a dynamical one. The field is kinematically non- 
trivial if its domain S m and its range Y define a nontrivial homotopy group: 
�9 r,~(Y) r 0. This is the case for the gravitational tensor field, but not for the 
magnetic field, nor for any kinematically linear field, one whose range Y is a 
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linear space homeomorphic to R ". For them, every continuous mapping 
f :  X---~ Yis homotop ic to thezerof ie ld f -  0viathehomotopySf(0 ~< S ~< 1). 
The homotopy group of any kinematically linear field is therefore trivial. 

Although Maxwell's equations are linear, the dynamical equations of 
the magnetic field in a plasma are not, and modify the topology of the range. 
In a nonresistive plasma [obeying the magnetohydrodynamic (MHD) 
equations] the flux of the magnetic field is carried with the plasma, trapped. 
As a consequence, if the magnetic field initially vanishes nowhere, it never 
vanishes anywhere. Thus the dynamics and certain initial conditions banish 
the point B = 0 from the image space, which becomes homeomorphic to 
E s - 0. 

Does this modify the homotopy group ? The domain being S a, the rele- 
vant group is 7ra(E 3 - 0). This group is isomorphic to ~r8($2): 

~ ( E  ~ - 0) = ,~3(I~ • s 2 )  = ~3(x l )  • ~ 3 ( s ~ )  = ~ 3 ( s ~ )  

�9 ra(S2) is known to be the infinite cyclic group Z:  

~3(s~)  = z 

Thus, homotopy theory permits MHD kinks to exist, and predicts that they 
compose as integers add. 

2.2. Physical MHD Kinks Exist. The only constraint imposed on a 
magnetic field by the MHD equations is div B = 0. We will prove by con- 
struction the existence of kinks obeying this constraint. 

In 1935 Hopf constructed a generator of zr3(S 2) known as the Hopf map, 
which has historical significance: It established the difference between 
homology and homotopy. We need it in our construction. 

A. The HopfMap. In his construction, Hopfrepresents the domain S 3 
by the set of unit spinors, pairs of complex numbers (zl, z2) such that 
z1~1 + z2~2 = 1. The range S 2 is represented by the quotient space of this S 3 
by the equivalence relation 

(z~' z2) ~ (z;' z~) "~ (3A E C){~ == Az~hZ'~ 

The equivalence class of (z~, z2) is designated by (zl :z~) and is called a ratio. 
This quotient is in fact R 2 plus the point at infinity, R 2 u o% a homeo- 

morph of Sz: Each equivalence class (zl :z2) with z2 # 0 can be thought of as 
a point in R 2 [parametrized naturally by the representative (z, 1); the point 
at infinity of R 2 is represented by the unique class (1:0)]. 

The Hopf map is defined as the natural map from the unit spinor space 
to the quotient space, namely, the map 

H :  ( z l ,  z~)  - +  ( z l  :z~)  



204  Finkels te in  and W e l l  
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Fig. 1. Computation of the Hopf kink B. 

B. Vector Kinks. As constructed by Hopf, H is a map from S a to 
R 2 + oo. For a physical vector field, we need a map B between the respective 
homeomorphs R a + oo and $2: I f  for convenience we designate by St~ the 
stereographic projection Sty: R~---~ S ~, we need to compute (Figure 1) 

B =  S t 2 o H o S t a  

(i) The Spin Map: St2 o H is a map of spinors into unit 3-vectors. One 
such map arises naturally by associating to the state W of a spin-{ object the 
expectation value of  the spin vector in state W: 

(or are the three Pauli matrices). We call P the spin map. In Appendix B, we 
show that St2 o H is precisely the spin map 

St2 o H = P 

(ii) The HopfKink: The composition Sts o P associates with each space 
point r = r lr  a vector obtained by applying a rotation R(n(r), o~(r)) with axis 
n(r) and angle oJ(r) to a fixed vector, say n~. 

We show that the axis of  rotation is nr, the radial direction at r, and the 
rotation angle o~(r) is a function of  the radial distance r alone: 

oJ(r) = 4 tan-  x r 

Proof. (a) The stereographic projection St3 can be conveniently con- 
sidered as a map that associates with each space point r a unit spinor W 
obtained by a rotation U(r) of a fixed unit spinor U/o: 

r --~ W = U(r)Wo 

with 
i - r . ,  

U ( r ) =  i + r.cr 

U(r) is unitary, connected to the identity, and maps the points at infinity 

into - I. 
(b) It is well known that any element of SU(2) can be written as 

exp (ico/2n. a) with n a unit vector and oJ a scalar. In Appendix C, we show 
that in our case 

n = l r ,  r = 4 t a n - l r  
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(c) Furthermore, it is also well known that the above transformation of 
a spin-�89 state induces a rotation with axis n and angle ~o of the expectation 
value of  the spin. B associates therefore with each space-point r the vector 
B(r) obtained by applying R(L, oJ(r)) to a fixed vector, say lz. Since oJ(oo) = 
20r, it follows that  lz is the value of  the field at infinity. 

Let us write n • for the linear operator on vectors defined by 

(n , , )v  = n , , v  

Any rotation R(n, co) can be conveniently written as e ~~ Indeed, e ~"x is 
orthogonal, since n x is antisymmetric, and leaves n invariant. Thus the Hopf 
kink, the vector field corresponding to the H o p f  map, is in this notation 

B(r) = e~176215 

(iii) Other Vector Kinks: Possessing one nontrivial field, we can now 
construct others by the following operations. 

(1) Substitute for ~o(r) any continuous scalar field that satisfies oJ(0) = 0 
and oJ(oo) = 2~r. 

(2) Multiply B(r) obtained above by any continuous scalar field A(r) ~ 0. 
(3) Restrict the base space to a finite ball r ~ ro and require the same 

boundary condition for co. 
These do not change the homotopy class of  the field. 
We have constructed in this way a family of  kinks 

B(r) = A(r)e ~ • 1~ 

with oo(0) = 0 and o~(ro) = 2zr. Do some of  them obey div B = 0 .9 

C. MHD Kinks. In spherical coordinates, B(r) is 

Br = A cos 0 

B0 = - A  sin 0 cos co 

B~ = - A  sin O sin co 

Let A(r) be a function of r alone. Then the condition div B = 0 is equivalent 
to 

1 a 2 1 ~ A o s i n O = C O S O [ r d A  ] 
r 2 ~ r A r  +rsin-----O r [ dr + 2A(1 - cos co) = 0 

The differential equation in A(r) 

dA o~ 
r - ~  + 4 sin2 ~-A = 0 
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has a solution Ao,(r) provided ~o(r) vanishes faster than r 112 in the vicinity of 
the origin: 

Ao,(r) = B~ exp - 4 f [  sinsr �89 dr 

Boo is the imposed boundary value. 

Conclusion: Any field of  the form 

B(r  ) = .4o,(r )el,  ~(r~ • L 
w(0) = 0, co ~ r 1/2 for r ~ 0 + 

co(ro) = 2mr for r t> r0 
n = 0 , + l , + 2  . . . .  

is a configuration of  n kinks with no monopoles. The number n is the homo- 
topic charge of  the field. 

3 .  I N S T A N T A N E O U S  K I N E M A T I C S  O F  M H D  H O M O T O P O N S  

3.1. Flux Lines of the HopfKink. The kinks of 2.2C all exhibit the same 
general pattern. 

The equations of  the lines of  force are 

dr 
- -  ----- COS /9 
dS 

dO cos w 
- -  = - sin 0 - -  
dS r 

d~o _ - s i n  w 

dS r 

A cross section of the flux surfaces by half a plane through the axis of  
symmetry is given in Figure 2; for computation the explicit expression of w 
was taken to be co(r) = 2zr sin (Trr/2) (0 ~< r ~< 1). As seen, the open lines of 
force fixed at the boundary lock in a toroid made of coaxial toroidal flux 
surfaces. The common equatorial axis is a circle (corresponding to ~o = zr/2). 
Another equatorial circle rounds the external "edge" ofthetoroid(oJ = 3~-/2). 

Viewed from above the xy plane, the open lines (Figure 3) twist as they 

approach the origin. 
Views from above of the toroid lines (Figures 4--6) reveal that they are 

poloidal-toroidal and that, in general, they ergodically fill the toroid surfaces. 

Existence of Limit Cycle. The equatorial circular flux line at the outer 
edge of the toroid is a separatrix. Figure 7 shows the behavior of  the flux lines 
in its vicinity as obtained by stability analysis. Together with the previous 
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Fig. 2. Magnetohydrodynamic axisymmetric kink; cut view of flux, surface. 

Fig. 3. View from above of open lines of force (above equator). 
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/ 
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Fig. 4. View from above o f  line of  force on flux surface III. 

Fig. 5. View from above o f  line of  force on flux surface II. 

Fig. 6. View from above of  line of  force on flux surface I. 
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Fig. 7. Stability analysis around the "stationary point" C(6 = �89 r = oJ-~(]~r)). The 
"time parameter" is the angle ~o. 

�9 j /  
s 

re) 

Fig. 8. View from above of  a flux line on the toroidal surface with C as a limit cycle. 
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global views, it indicates that Cis a limit cycle for two flux surfaces: the surface 
of the toroid (Figure 8), and one axisymmetric surface of open flux lines. 

Toroidal magnetic configurations possessing limit cycles on their surfaces 
have been studied recently for their stability against global interchanges and 
other MHD instabilities (B. K. Harrison, et al., 1973). 

3.2. Other Kinks. Homotopies of the Hopf kink give new kinks. 

A. "Angular" Homotopies. Any function oo(r, 0) that obeys: 

oo(ro, O) = 2rr 

oo(O) = 0 

(where ro is the radius of the boundary) is homotopic to ooc(r) (defined or 
satisfying oog0) = 0, oogr0) = 2~r) by the homotopy 

f2(r, O, t) = (1 - t)ooc(r) + too(r, 0), 0 <~ t <<. 1 

elr a• 1~ is therefore a homotopy between eX, ~176 • 1~ and elr~ <r)• l~. We call 
it "angular homotopy." 

Conclusion: A(r, O)el,'~176 are (new) magnetic kinks if and only if they 
are divergence free, i.e. if A satisfies 

OA OA Ooo 
r cos 0 -fir - sin 0 cos oo ~=~ -4- A sin 0 sin oo ~ + 2A cos 0(1 - cos oo) = 0 

Angular homotopies may add pairs of antikinks to the initial kink. 

B. "Spatial Homotopies.'" The Hopf kink associates with each space 
point an element of the rotation group SO(S) in a one-to-one correspondence 
(the trivial rotations being mapped to the boundary). Thus, to any homeo- 
morphism of the space leaving invariant the boundary corresponds a homeo- 
morphism of the rotation group, which is a homotopy for the field. We call it 
"spatial homotopy." 

A spatial homeomorphism as an invertible coordinate transformation, 
preserves flux lines and flux surfaces. 

Conclusion: New kinks can be obtained by homeomorphisms of the flux 
surfaces of the Hopf kink. 

4. D Y N A M I C S  O F  K I N K S  

As members of nontrivial homotopy classes, kinks have characteristic 
dynamical properties. 
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4.1. Homotopie Charge Conservation 

Basic: Homotopic charge is a constant of  motion. The configuration 
evolves within its homotopy class. 

Inferences: This class, when nontrivial, is a limited region of  functional 
phase space and may contain high-energy configurations which have no mode 
of decay to homotopically trivial lower-energy configurations. This leads one 
to seek solitonlike behavior, as well as other forms of  nondissipative energy 
transport. 

Whenever time evolution is a spatial homotopy, toroidal flux surfaces 
remain so and bound the plasma. The dimensional energy estimate E = O2/R 
(where �9 is the flux through the torus, conserved; and R is the major radius) 
shows that R tends to grow. 

Restriction: Homotopic charge may be created or destroyed when time 
evolution is not a homotopy, in particular when configurations possessing 
discontinuities occur, as in shocks. This important possibility can be checked 
by numerical computation. 

4.2. Creation and Annihilation in Pairs 

Basic: Magnetohydrodynamic homotopons combine like integers. In 
particular, they may be created in pairs (1 - 1 -- 0): From a zero-homotopic- 
charge configuration may emerge two homotopons of opposite charge: a 
kink and an antikink. 

Similarly, a kink-antikink pair may annihilate. 

Inferences: A kink homotopic to the Hopf  kink by an angular homotopy 
has the opposite co(r, 0) value of its antikink (equivalently, its opposite B~). 

Pair creation seems the simplest mode of kink production. The most 
plausible environment for spontaneous pair creations is turbulence. The rate 
of production is expected to depend on the energy of the turbulence. 

4.3. Topological Stability of Kinks. The kinks we constructed look 
roughly like flux rings in a vertical field. Is their topological stability more 
than a corollary to flux conservation ? After all, any closed flux tube conserves 
its topology in a nonresistive medium. Since the lines of force are carried by 
the fluid, and the moving fluid particles remain in the neighborhood of each 
other, a closed line of force remains closed and a toroid evolves to a 
homeomorph. 

However, the conservation law of kinks is stronger. Kinks are stable, 
toroids are not. For one topical example, in the presence of small but finite 
resistivity, lines of force are not restricted to follow exactly the fluid particles, 



212 Finkelstein and Weil 

the loops can open, and flux tubes can disappear immediately. For kinks, it is 
not flux conservation that is essential but only that the field does not pass 
through the value zero. For a plasma of finite resistivity g and dimension L 
this assures a kink lifetime of about 4~rl~crL2/c 2. 

During that time, kinks can evolve in principle from a configuration 
including one toroid to a homotopic one with three toroids (see Section 4.2) 
since flux tubes are not preserved. 

5. KINKS AND THE ORIGIN OF GALAXIES 

The theory of the formation of the galaxies from cosmic hydrodynamic 
turbulence has been reintroduced by Ozernoi and Chernig (1968). In its new 
version it presents many attractive features and deals successfully with all the 
main problems but one: Does the cosmic turbulence decay catastrophically 
during the matter-dominated era before recombination? No satisfactory 
mechanism preventing the decay has yet been found. 

We ask whether, in the process of magnetohydrodynamic turbulence, 
hydrodynamic turbulence decays but magnetic homotopons survive and shape 
the protogalaxies. We ask indulgence for a looseness of discussion inevitable 
at the present stage of knowledge. 

5.1. Present State of Cosmic Turbulence Theory. Ozernoi and Chernin 
(1968) exploited von Weizs/icker (1948) and Gamow's (1952) cosmic turbu- 
lence theory within the framework of the "hot big bang" cosmology (see 
recent review by Jones, 1976). They suppose the existence of a primeval 
strong hydrodynamic turbulence and postulate a turbulence scale, that is, a 
largest scale whose dynamical time scale is equal to the cosmic expansion time 
scale. They distinguish between three successive regimes: 

A. During the radiation-dominated era (t < t J  the turbulence scale 
increases with time: The larger scales successively encompassed in the 
turbulence provide a source of energy against decay. 

B. During the matter-dominated era, before recombination (teq < t < 
trio) the scale of the turbulence decreases with time. Estimates of the mass 
associated with the largest turbulent eddy M are of galactic size. 

C. After recombination (t > trio) the sound speed becomes much lower 
than the characteristic velocities. Supersonic motions generate large density 
fluctuations of scale M. Because of the cosmic expansion, the potential energy 
finally exceeds the kinetic energy and M condenses to form a galaxy. 

5.2. Unsolved Issues of the Cosmic Turbulence Theory. During the 
second phase (teq < t < troo), as the scale of the turbulence decreases, support 
from larger scales against viscous decay is considerably reduced. It is an 
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unproven assumption of the theory that the mean straining rate due to the 
frozen eddies is sufficient to maintain the turbulence. Jones (1973) showed 
that if free decay is allowed, all the turbulence would decay prior to recom- 
bination unless teq ~ tree. 

Peebles (1971) pointed out that during the third phase (t > troo), because 
of the existence of matter currents whose hydrodynamic time scale are much 
shorter than the cosmic expansion time scale, shock waves would compress a 
large fraction of the matter in the universe into small, dense, bound lumps, 
which can hardly be identified with present galaxies. 

5.3. Can Hydromagnetie Kinks Be Seeds of Present Galaxies? The 
existence of galactic (if not intergalactic) magnetic fields is now firmly estab- 
lished. Their primeval nature is probable, their origin still mysterious. They 
have perhaps been given less attention than they deserve, the general trend 
being to consider their role in cosmic dynamics as secondary. Zel'dovich (1969), 
however, studied the possibility that inhomogeneous magnetic fields produce 
an inhomogeneous mass density of galactic size, and showed that this was 
compatible with present magnetic field values. 

Here we consider the role of the cosmic magnetic field in cosmic MHD 
turbulence. Suppose magnetic kinks were present during the expansion. Can 
we use them in a plausible scenario ? 

Galaxies as Remnants of  MHD Kinks: Consider the following speculation: 
After the first second, the universe is an expanding hydrogen helium plasma. 
Its resistivity is negligible. From a primeval global magnetic seed, turbulence 
generates local magnetic fields of high intensity, with correlation lengths of 
the order of the velocity correlation length, following a mechanism described 
by Batchelor (1950) for stationary MHD turbulence. In the background of 
the uniform field, homotopons spontaneously appear in pairs. Kinks and 
antikinks are produced and annihilated strongly in pairs, and weakly one by 
one, due to approximate conservation of homotopic charge. During the 
entire radiation-dominated era, turbulence is sustained by an increasing 
turbulent scale (regime A of Section 5.1). 

When matter density exceeds radiation density, the regime changes, the 
turbulence scale decreases, and kink production slows. Except for large-scale 
"frozen out" eddies, the turbulence soon completely decays. Since isolated 
homotopons decay only weakly, they remain in the expanding universe. They 
confine matter in their toroidal flux surfaces and impart to the conducting 
matter an angular momentum, the germ of galactic spin. 

The confined mass is typically the mass of the largest turbulent scale, M, 
of galactic size. 

As the universe expands, gravity replaces magnetism in shaping the 
galaxy, for several reasons: 
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(1) During the expansion, the magnetic pressure decreases as 1/r 4 (the 
flux being conserved), whereas the gravity pressure on the surface of confine- 
ment decreases only as 1/r 3. Galaxies start to collapse. 

(2) At z = 1000 the cosmic plasma begins to recombine. It takes 20% 
of the cosmic expansion time to reach near total recombination. 

(3) The ordered structure of the homotopons may disintegrate in shock 
waves. Their present survival is not excluded, however. The interstellar 
magnetic arches observed in the neighboring part of our galaxy (Mathewson, 
1968) are suggestive and require further study. 

Conclusion: This speculation shows the new directions of research that 
this topological approach points out in continuum mechanics. Wherever the 
conditions of validity of the new conservation law hold (as in the sun, the 
earth core, or hot laboratory plasmas) homotopons might arise as structures 
of anomalous behavior and lifetime. One can pursue a similar analysis in 
hydrodynamics and show the existence of physical homotopons in the 
vorticity field of an invicite fluid. 

Quest ions:  Do stationary kinks exist ? (Not in the class of configurations 
of Section 2.2C.) What is the rate of kink and kink-pair production ? Can they 
be seen experimentally ? 

APPENDIX A: BASICS OF H O M O T O P Y  THEORY 2 

Homotopy classifies maps between two given topological spaces X and qb. 

A.1. Homotopy Relation. Consider all the continuous maps {g~} from 
X to qb subjected to the condition at the boundary 8X: 

g ( ~ X )  = yo 

(Y0 is a fixed point in co). 
Define the relation "homotopic to" (~) :  

IG: X • I - +  �9 ( / i s  the unit interval) 

, / G ( x ,  0) = go 
go "" g l  <:> 3G(x,  t ) ~ G ( x ,  1) g l  / 

L G ( ~ X , t )  = yo 0 < t < 1 

Loosely, go is homotopic to g~ if there exists a continuous transformation of 
go into gz which respects the boundary condition. 

A.2. Homotopy Class. Theorem: ~ is an equivalence relation. 
The equivalence classes defined by the homotopy relation are called 

homotopy  classes. 

2 See for instance Hilton 1944. 
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A.3. Homotopy  Group. H o m o t o p y  classes 1 and 2 can be added if an 
addit ion of  two representatives is defined consistently: 

(g l (2x ) ,  0 <~ x <~ �89 

gl + g 2 : = <  ---L.g2(2x- 1), �89 ~< x ~< 1 

g3 : =  gl  + g2 belongs to class 3 (written [g3]). 

Theorem. Class 3 is independent  o f  the choice of  the representatives 
gl  and g2. This enables the definition 

[gl] + [g21: = [g~ + g2] 

Loosely, the representative of  the sum of  two classes is obta ined by  adding 
two representatives whose nontrivial  structures do not  overlap. 

Theorem. Taken  with this addition, the classes fo rm a group,  the 
homotopy group. 

I f  X is the Euclidean n-cube this group is denoted rr,(r 
Nota t ion :  

E '~ = n-ball = x l , . . . ,  x~ 2 ~< 1 

Relevant  h o m o t o p y  groups:  

,,1(S 2) = 1 

~2(S 2) = Z 

~3(S 2) = Z 

1 means the group with one element, and Z means the group of  the integers. 

A P P E N D I X  B :  H o St2 = P 

The geometrical  construct ion of  the stereographic project ion St2 of  R 2 + 
oo onto S 2 is shown in Figure 9. 

I f  we parametr ize  R 2 = {(x, y)} by {z = x + iy), the image ]~(z) by St2 is 

B(z) = A(plp -- ix) + (1 -- h)lz 

(see Figure 9). p is the absolute value of  z, l p its radial direction in the plane. 
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prp M 

Fig. 9. Geometric construction of the stereographic projection of R 2. 

is determined by the condit ion B 2 = 1, which yields 

4 
4+ p2 

The  H o p f  m a p  associates to the uni t  spinors ~F = [w the ratios zl /z2 

which parametr ize  R 2 + or. 
We take this paramet r iza t ion  to be 

Then  

and 

z = 2 zl 
Z2 

1 
A ---- = Z2Z2 

1 + Zl~l/Z2~2 

~ ( ~ )  = (z2~2 - z ~ ) l ~  + 2[~z2] 1~, 

= w~,~2-F L + ~v(lr + i.~1)~1o 

= ~Fa~F 

A P P E N D I X  C 

The computa t ion  of  o~ and n is simpler in quaternions:  I f  the vector  r is 
considered as an imaginary quaternion and the spinor ~F as a unit  quaternion,  
Sts can be writ ten 

r - - > W  = 1 + r ~Fo 
1 - r  
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I t  follows (if  we take  ~F 0 to be 1) 

q ~ - I  
q " + l  

Therefore  

e l n T  - -  1 
e in ~ + 1 

eln T/2 _ _  e - l n T / 2  

+ eln T/2 "1-  e - in  T/2 

= t anh  �89 In ~F 

~ e 2  t a n h  - 1 r 

I f  we write r as Ir lir (with ir 2 = --1) ,  then 

X ~  = e 2 1 r  t a n  - 1 It" 

In spinor  and  vectorial  language,  this becomes 

_-- e21,.~ tan-1 r 

A C K N O W L E D G M E N T  

We are grateful to A. Feldbaum for his technical assistance with the computer 
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